Migrating from LLMChain
LLMChain
combined a prompt template, LLM, and output parser into a class.
Some advantages of switching to the LCEL implementation are:
- Clarity around contents and parameters. The legacy
LLMChain
contains a default output parser and other options. - Easier streaming.
LLMChain
only supports streaming via callbacks. - Easier access to raw message outputs if desired.
LLMChain
only exposes these via a parameter or via callback.
%pip install --upgrade --quiet langchain-openai
import os
from getpass import getpass
os.environ["OPENAI_API_KEY"] = getpass()
Legacyβ
Details
from langchain.chains import LLMChain
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
prompt = ChatPromptTemplate.from_messages(
[("user", "Tell me a {adjective} joke")],
)
chain = LLMChain(llm=ChatOpenAI(), prompt=prompt)
chain({"adjective": "funny"})
{'adjective': 'funny',
'text': "Why couldn't the bicycle stand up by itself?\n\nBecause it was two tired!"}
LCELβ
Details
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
prompt = ChatPromptTemplate.from_messages(
[("user", "Tell me a {adjective} joke")],
)
chain = prompt | ChatOpenAI() | StrOutputParser()
chain.invoke({"adjective": "funny"})
'Why was the math book sad?\n\nBecause it had too many problems.'
Note that LLMChain
by default returns a dict
containing both the input and the output. If this behavior is desired, we can replicate it using another LCEL primitive, RunnablePassthrough
:
from langchain_core.runnables import RunnablePassthrough
outer_chain = RunnablePassthrough().assign(text=chain)
outer_chain.invoke({"adjective": "funny"})
API Reference:RunnablePassthrough
{'adjective': 'funny',
'text': 'Why did the scarecrow win an award? Because he was outstanding in his field!'}
Next stepsβ
See this tutorial for more detail on building with prompt templates, LLMs, and output parsers.
Check out the LCEL conceptual docs for more background information.