Skip to main content

PDFPlumber

Like PyMuPDF, the output Documents contain detailed metadata about the PDF and its pages, and returns one document per page.

Overview

Integration details

ClassPackageLocalSerializableJS support
PDFPlumberLoaderlangchain_community

Loader features

SourceDocument Lazy LoadingNative Async Support
PDFPlumberLoader

Setup

Credentials

No credentials are needed to use this loader.

If you want to get automated best in-class tracing of your model calls you can also set your LangSmith API key by uncommenting below:

# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
# os.environ["LANGSMITH_TRACING"] = "true"

Installation

Install langchain_community.

%pip install -qU langchain_community

Initialization

Now we can instantiate our model object and load documents:

from langchain_community.document_loaders import PDFPlumberLoader

loader = PDFPlumberLoader("./example_data/layout-parser-paper.pdf")
API Reference:PDFPlumberLoader

Load

docs = loader.load()
docs[0]
Document(metadata={'source': './example_data/layout-parser-paper.pdf', 'file_path': './example_data/layout-parser-paper.pdf', 'page': 0, 'total_pages': 16, 'Author': '', 'CreationDate': 'D:20210622012710Z', 'Creator': 'LaTeX with hyperref', 'Keywords': '', 'ModDate': 'D:20210622012710Z', 'PTEX.Fullbanner': 'This is pdfTeX, Version 3.14159265-2.6-1.40.21 (TeX Live 2020) kpathsea version 6.3.2', 'Producer': 'pdfTeX-1.40.21', 'Subject': '', 'Title': '', 'Trapped': 'False'}, page_content='LayoutParser: A Unified Toolkit for Deep\nLearning Based Document Image Analysis\nZejiang Shen1 ((cid:0)), Ruochen Zhang2, Melissa Dell3, Benjamin Charles Germain\nLee4, Jacob Carlson3, and Weining Li5\n1 Allen Institute for AI\nshannons@allenai.org\n2 Brown University\nruochen zhang@brown.edu\n3 Harvard University\n{melissadell,jacob carlson}@fas.harvard.edu\n4 University of Washington\nbcgl@cs.washington.edu\n5 University of Waterloo\nw422li@uwaterloo.ca\nAbstract. Recentadvancesindocumentimageanalysis(DIA)havebeen\nprimarily driven by the application of neural networks. Ideally, research\noutcomescouldbeeasilydeployedinproductionandextendedforfurther\ninvestigation. However, various factors like loosely organized codebases\nand sophisticated model configurations complicate the easy reuse of im-\nportantinnovationsbyawideaudience.Thoughtherehavebeenon-going\nefforts to improve reusability and simplify deep learning (DL) model\ndevelopmentindisciplineslikenaturallanguageprocessingandcomputer\nvision, none of them are optimized for challenges in the domain of DIA.\nThis represents a major gap in the existing toolkit, as DIA is central to\nacademicresearchacross awiderangeof disciplinesinthesocialsciences\nand humanities. This paper introduces LayoutParser, an open-source\nlibrary for streamlining the usage of DL in DIA research and applica-\ntions. The core LayoutParser library comes with a set of simple and\nintuitiveinterfacesforapplyingandcustomizingDLmodelsforlayoutde-\ntection,characterrecognition,andmanyotherdocumentprocessingtasks.\nTo promote extensibility, LayoutParser also incorporates a community\nplatform for sharing both pre-trained models and full document digiti-\nzation pipelines. We demonstrate that LayoutParser is helpful for both\nlightweight and large-scale digitization pipelines in real-word use cases.\nThe library is publicly available at https://layout-parser.github.io.\nKeywords: DocumentImageAnalysis·DeepLearning·LayoutAnalysis\n· Character Recognition · Open Source library · Toolkit.\n1 Introduction\nDeep Learning(DL)-based approaches are the state-of-the-art for a wide range of\ndocumentimageanalysis(DIA)tasksincludingdocumentimageclassification[11,\n1202\nnuJ\n12\n]VC.sc[\n2v84351.3012:viXra\n')
print(docs[0].metadata)
{'source': './example_data/layout-parser-paper.pdf', 'file_path': './example_data/layout-parser-paper.pdf', 'page': 0, 'total_pages': 16, 'Author': '', 'CreationDate': 'D:20210622012710Z', 'Creator': 'LaTeX with hyperref', 'Keywords': '', 'ModDate': 'D:20210622012710Z', 'PTEX.Fullbanner': 'This is pdfTeX, Version 3.14159265-2.6-1.40.21 (TeX Live 2020) kpathsea version 6.3.2', 'Producer': 'pdfTeX-1.40.21', 'Subject': '', 'Title': '', 'Trapped': 'False'}

Lazy Load

page = []
for doc in loader.lazy_load():
page.append(doc)
if len(page) >= 10:
# do some paged operation, e.g.
# index.upsert(page)

page = []

API reference

For detailed documentation of all PDFPlumberLoader features and configurations head to the API reference: https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.pdf.PDFPlumberLoader.html


Was this page helpful?


You can also leave detailed feedback on GitHub.