Skip to main content

LangSmithLoader

This notebook provides a quick overview for getting started with the LangSmith document loader. For detailed documentation of all LangSmithLoader features and configurations head to the API reference.

Overviewโ€‹

Integration detailsโ€‹

ClassPackageLocalSerializableJS support
LangSmithLoaderlangchain-coreโŒโŒโŒ

Loader featuresโ€‹

SourceLazy loadingNative async
LangSmithLoaderโœ…โŒ

Setupโ€‹

To access the LangSmith document loader you'll need to install langchain-core, create a LangSmith account and get an API key.

Credentialsโ€‹

Sign up at https://langsmith.com and generate an API key. Once you've done this set the LANGSMITH_API_KEY environment variable:

import getpass
import os

if not os.environ.get("LANGSMITH_API_KEY"):
os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")

If you want to get automated best-in-class tracing, you can also turn on LangSmith tracing:

# os.environ["LANGSMITH_TRACING"] = "true"

Installationโ€‹

Install langchain-core:

%pip install -qU langchain-core

Clone example datasetโ€‹

For this example, we'll clone and load a public LangSmith dataset. Cloning creates a copy of this dataset on our personal LangSmith account. You can only load datasets that you have a personal copy of.

from langsmith import Client as LangSmithClient

ls_client = LangSmithClient()

dataset_name = "LangSmith Few Shot Datasets Notebook"
dataset_public_url = (
"https://smith.langchain.com/public/55658626-124a-4223-af45-07fb774a6212/d"
)

ls_client.clone_public_dataset(dataset_public_url)

Initializationโ€‹

Now we can instantiate our document loader and load documents:

from langchain_core.document_loaders import LangSmithLoader

loader = LangSmithLoader(
dataset_name=dataset_name,
content_key="question",
limit=50,
# format_content=...,
# ...
)
API Reference:LangSmithLoader

Loadโ€‹

docs = loader.load()
print(docs[0].page_content)
Show me an example using Weaviate, but customizing the vectorStoreRetriever to return the top 10 k nearest neighbors.
print(docs[0].metadata["inputs"])
{'question': 'Show me an example using Weaviate, but customizing the vectorStoreRetriever to return the top 10 k nearest neighbors. '}
print(docs[0].metadata["outputs"])
{'answer': 'To customize the Weaviate client and return the top 10 k nearest neighbors, you can utilize the `as_retriever` method with the appropriate parameters. Here\'s how you can achieve this:\n\n```python\n# Assuming you have imported the necessary modules and classes\n\n# Create the Weaviate client\nclient = weaviate.Client(url=os.environ["WEAVIATE_URL"], ...)\n\n# Initialize the Weaviate wrapper\nweaviate = Weaviate(client, index_name, text_key)\n\n# Customize the client to return top 10 k nearest neighbors using as_retriever\ncustom_retriever = weaviate.as_retriever(\n    search_type="similarity",\n    search_kwargs={\n        \'k\': 10  # Customize the value of k as needed\n    }\n)\n\n# Now you can use the custom_retriever to perform searches\nresults = custom_retriever.search(query, ...)\n```'}
list(docs[0].metadata.keys())
['dataset_id',
'inputs',
'outputs',
'metadata',
'id',
'created_at',
'modified_at',
'runs',
'source_run_id']

Lazy Loadโ€‹

page = []
for doc in loader.lazy_load():
page.append(doc)
if len(page) >= 10:
# do some paged operation, e.g.
# index.upsert(page)
# page = []
break
len(page)
10

API referenceโ€‹

For detailed documentation of all LangSmithLoader features and configurations head to the API reference: https://api.python.langchain.com/en/latest/document_loaders/langchain_core.document_loaders.langsmith.LangSmithLoader.html


Was this page helpful?


You can also leave detailed feedback on GitHub.