ChatGroq
This will help you getting started with Groq chat models. For detailed documentation of all ChatGroq features and configurations head to the API reference. For a list of all Groq models, visit this link.
Overviewโ
Integration detailsโ
Class | Package | Local | Serializable | JS support | Package downloads | Package latest |
---|---|---|---|---|---|---|
ChatGroq | langchain-groq | โ | beta | โ |
Model featuresโ
Tool calling | Structured output | JSON mode | Image input | Audio input | Video input | Token-level streaming | Native async | Token usage | Logprobs |
---|---|---|---|---|---|---|---|---|---|
โ | โ | โ | โ | โ | โ | โ | โ | โ | โ |
Setupโ
To access Groq models you'll need to create a Groq account, get an API key, and install the langchain-groq
integration package.
Credentialsโ
Head to the Groq console to sign up to Groq and generate an API key. Once you've done this set the GROQ_API_KEY environment variable:
import getpass
import os
os.environ["GROQ_API_KEY"] = getpass.getpass("Enter your Groq API key: ")
If you want to get automated tracing of your model calls you can also set your LangSmith API key by uncommenting below:
# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
# os.environ["LANGSMITH_TRACING"] = "true"
Installationโ
The LangChain Groq integration lives in the langchain-groq
package:
%pip install -qU langchain-groq
[1m[[0m[34;49mnotice[0m[1;39;49m][0m[39;49m A new release of pip is available: [0m[31;49m24.0[0m[39;49m -> [0m[32;49m24.1.2[0m
[1m[[0m[34;49mnotice[0m[1;39;49m][0m[39;49m To update, run: [0m[32;49mpip install --upgrade pip[0m
Note: you may need to restart the kernel to use updated packages.
Instantiationโ
Now we can instantiate our model object and generate chat completions:
from langchain_groq import ChatGroq
llm = ChatGroq(
model="mixtral-8x7b-32768",
temperature=0,
max_tokens=None,
timeout=None,
max_retries=2,
# other params...
)
Invocationโ
messages = [
(
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
),
("human", "I love programming."),
]
ai_msg = llm.invoke(messages)
ai_msg
AIMessage(content='I enjoy programming. (The French translation is: "J\'aime programmer.")\n\nNote: I chose to translate "I love programming" as "J\'aime programmer" instead of "Je suis amoureux de programmer" because the latter has a romantic connotation that is not present in the original English sentence.', response_metadata={'token_usage': {'completion_tokens': 73, 'prompt_tokens': 31, 'total_tokens': 104, 'completion_time': 0.1140625, 'prompt_time': 0.003352463, 'queue_time': None, 'total_time': 0.117414963}, 'model_name': 'mixtral-8x7b-32768', 'system_fingerprint': 'fp_c5f20b5bb1', 'finish_reason': 'stop', 'logprobs': None}, id='run-64433c19-eadf-42fc-801e-3071e3c40160-0', usage_metadata={'input_tokens': 31, 'output_tokens': 73, 'total_tokens': 104})
print(ai_msg.content)
I enjoy programming. (The French translation is: "J'aime programmer.")
Note: I chose to translate "I love programming" as "J'aime programmer" instead of "Je suis amoureux de programmer" because the latter has a romantic connotation that is not present in the original English sentence.
Chainingโ
We can chain our model with a prompt template like so:
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
),
("human", "{input}"),
]
)
chain = prompt | llm
chain.invoke(
{
"input_language": "English",
"output_language": "German",
"input": "I love programming.",
}
)
AIMessage(content='That\'s great! I can help you translate English phrases related to programming into German.\n\n"I love programming" can be translated as "Ich liebe Programmieren" in German.\n\nHere are some more programming-related phrases translated into German:\n\n* "Programming language" = "Programmiersprache"\n* "Code" = "Code"\n* "Variable" = "Variable"\n* "Function" = "Funktion"\n* "Array" = "Array"\n* "Object-oriented programming" = "Objektorientierte Programmierung"\n* "Algorithm" = "Algorithmus"\n* "Data structure" = "Datenstruktur"\n* "Debugging" = "Fehlersuche"\n* "Compile" = "Kompilieren"\n* "Link" = "Verknรผpfen"\n* "Run" = "Ausfรผhren"\n* "Test" = "Testen"\n* "Deploy" = "Bereitstellen"\n* "Version control" = "Versionskontrolle"\n* "Open source" = "Open Source"\n* "Software development" = "Softwareentwicklung"\n* "Agile methodology" = "Agile Methodik"\n* "DevOps" = "DevOps"\n* "Cloud computing" = "Cloud Computing"\n\nI hope this helps! Let me know if you have any other questions or if you need further translations.', response_metadata={'token_usage': {'completion_tokens': 331, 'prompt_tokens': 25, 'total_tokens': 356, 'completion_time': 0.520006542, 'prompt_time': 0.00250165, 'queue_time': None, 'total_time': 0.522508192}, 'model_name': 'mixtral-8x7b-32768', 'system_fingerprint': 'fp_c5f20b5bb1', 'finish_reason': 'stop', 'logprobs': None}, id='run-74207fb7-85d3-417d-b2b9-621116b75d41-0', usage_metadata={'input_tokens': 25, 'output_tokens': 331, 'total_tokens': 356})
API referenceโ
For detailed documentation of all ChatGroq features and configurations head to the API reference: https://api.python.langchain.com/en/latest/chat_models/langchain_groq.chat_models.ChatGroq.html
Relatedโ
- Chat model conceptual guide
- Chat model how-to guides